Contrasting artificial intelligence with human intelligence

In search of alternatives for the future of AI

1												
						11					1	

Krizhevsky, A., Sutskever, I. \& Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. NIPS 2012, 1097-1105.
1.2 million images, 1000 clases, 650000 neurons, 60 million parameters

Mais ultimement, n'est ce pas un peu un position "religieuse" que de penser qu'aucune "loss function" ne pourra remplacer un jour l'intelligence "humaine"?

But ultimately, isn't ita bit of a "religious" position to think that no loss function will be able to replace "human" intelligence one day?

Sujet
Re: Vient de paraitre: Des intelligences TRES artificielles De :

Date
$08 / 02 / 2019$ à $11: 52$
Pour :
j1@dessalles.fr

Hello Jean Louis,

Desole d'etre tardif pour repondre..
Je suis en australie prof invite pour l'instant.
Gros decalage horaire ... et aussi climatique :-)

Genial d'ecrire un (autre) bouquin sur un sujet aussi inquietant...
Je vois que tu as des idees bien arretees sur tout le buz IA en ce moment.

Mais ultimement, n'est ce pas un peu un position "religieuse
que de penser qu'aucune "loss function" ne pourra
remplacer un jour l'intelligence "humaine"?
oui, je sais que c'est deprimant ;-)
amicalement
झी

On 07/02/19/ 6 21:26, Jean-Louis Dessalles wrote:
$>$
$>$
length: 1799

"delete all images that are duplicated"

Who I am...

. Telecom Paristech (IP Paris)
. Artificial intelligence

- Grail: Reverse-engineer the human mind
- More concerned with language (Semantics, relevance) (but also emergence, origins of language, evolution, social signals...)
. Current topics
- Simplicity Theory
- Contrast

Contrasting artificial intelligence with human intelligence

. Ten limitations of deep learning
= Simplicity Theory: An AIT approach to intelligence
Contrast: a missing mechanism in the current AI toolbox
. Conclusion: mechanisms that operate on the fly

Ten limitations of deep learning

Caveat:

Several issues mentioned in this section (but not all of them) are regurlarly raised by scholars.
e.g.: Marcus, G. (2018). Deep learning: A critical appraisal. ArXiv, 1801.006.

Ten limitations of deep learning - 1. Continuity

. Bias is unavoidable
Schaffer, C. (1994).
A conservation law for generalization performance.
Proc. of the Machine Learning Conf., 259-265. Rutgers University.
. NN are biased to learn continuous functions
. grant a bank loan... ok, maybe
. criminal investigation... not ok!

Ten limitations of deep learning - 2. Isotropy

Ten limitations of deep learning - 3. Large data sets

- A child learns about four new words a day

Goulden, R., Nation, P. \& Read, J. (1990). How large can a receptive vocabulary be? Applied linguistics, 11 (4), 341-363.

- Statistical learning achieves one-shot (or zero-shot) learning !

Zhang, L., Xiang, T. \& Gong, S. (2017).
Learning a deep embedding model for zero-shot learning. ArXiv, $1611.05088 v 3$.

- Ex: music style

Lake, B., Salakhutdinov, R., Gross, J. \& Tenenbaum, J. B. (2011). One shot learning of simple visual concepts. CogSci.

- CtrEx:
- "buffet plate clip for wine glass"
- "jealous", "prevent", "around", "chase", "abdicate"

Lake，B．，Salakhutdinov，R．，Gross，J．\＆Tenenbaum，J．B．（2011）．One shot learning of simple visual concepts．COGSCI－2011，2568－2573．

固をす？

स 出 रे月 অあえ

Ten limitations of deep learning - 4. Relations

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S. \& Bengio, Y. (2015).
Show, attend and tell: Neural image caption generation with visual attention. 32nd International Conference on Machine Learning, 2048-2057.

A woman is throwing a frisbee in a park.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

www.sirimiciuyuicuig.scieise

Ten limitations of deep learning - 4. Relations

Santoro, A., Raposo, D. et al. (2017). A simple neural network module for relational reasoning. NIPS 2017, 4967-4976.

Ten limitations of deep learning - 4. Relations

"prevent", "around", "chase", "abdicate"

Ten limitations of deep learning - 5. Structures

$$
1,2,2,3,3,3,4,4,4,4
$$

abc is to abd as ppqqrr is to ... ?

Mikolov, Tomas., Sutskever, I., Chen, K., Corrado, G. \& Dean, J. (2013).
Distributed representations of words and phrases and their compositionality.
Advances in Neural Information Processing Systems 26 (NIPS 2013), 3111-
3119.
"Madrid" - "Spain" + "France" = "Paris"

Ten limitations of deep learning - 6. Exceptions

Turner, R., Ghahramani, Z. \& Bottone, S. (2010).
Fast online anomaly detection using scan statistics.
 MLSP 2010, 385-390.

- Anomaly detection
- Curse of Dimensionality
* The missing eyebrow

Buying a used car

Ten limitations of deep learning - 7. Negation

". For a DNN, "this is a cat" does not mean "this is not a dog" nor

- Inconsistency: House without door
* Explanation: "This is too big to be a cat"

Ten limitations of deep learning - 8. Narrow expertise

Silver, D., Schrittwieser, J. \& et al., (2017).
Mastering the game of go without human knowledge. Nature, 550 (7676), 354-359.
Esteva, A. et al. (2017).
Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542 (7639), 115-118.

Melanocytic lesions
Melanocytic lesions (dermoscopy)

Ten limitations of deep learning - 9. No sense making

'One swallow does not thirst quench'
(alluding to 'One swallow does not a summer make')
'Une hirondelle n'aspire pas la soif'
Hofstadter, D. R. (2018).
The shallowness of Google Translate.
The Atlantic, , Jan, 30.
semantic proximity \neq semantics

Ten limitations of deep learning - 10. No systematicity

= Behind the rock vs. behind the car

Fodor, J. A. \& Pylyshyn, Z. W. (1988).
Connectionism and cognitive architecture: A critical analysis. Cognition, 28 (1-2), 3-71.
$=\operatorname{smaller}(m, n) \quad \operatorname{larger}(n, m)$
Weber, N., Shekhar, L. \& Balasubramanian, N. (2018).
The Fine Line between Linguistic Generalization
and Failure in Seq2Seq-Attention Models. ArXiv, 1805.014.

DNN have access to extensions, not to intensions.

Contrasting artificial intelligence with human intelligence

Ten limitations of deep learning

Simplicity Theory: An AIT approach to intelligence
. Contrast: a missing mechanism in the current AI toolbox
. Conclusion: mechanisms that operate on the fly

Algorithmic approach to AI

"comprehension is compression"

$C(x)=\min _{p}\{l(p): M(p)=x\}$
Chaitin, G. J. (2004).
On the intelligibility of the universe and the notions
of simplicity, complexity and irreducibility.
Grenzen und Grenzüberschreitungen, XIX, 517-534.

n classes
$\log _{2}(n)$ bits spared for each correctly classified example

Algorithmic approach to AI

most probable continuation?

122333444455555

Solomonoff, R. J. (1964).
A Formal Theory of Inductive Inference.
Information and Control, 7 (1), 1-22.

Search: seq:1,2,2,3,3,3,4,4,4,4

n appears n times: floor(sqrt(2n) +1/2).
$1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10,10$, $10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13$
n appears partition (n) times.
$0,1,2,2,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8$, $8,9,9$, 10

Number of digits in lazy-Fibonacci-binary representation of n.
$1,1,2,2,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7$, $7,7,7,7,7,7,7,8,9,9,9,9,9,9,9,9,9$, 9, 9

Write $n=C(i, 3)+C(j, 2)+C(k, 1)$ with $i>j>k>=0$; sequence gives j values.
$1,1,2,2,1,2,2,3,3,3,1,2,2,3,3,3,4,4,4,4,1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,1,2,2,3,3,3,4,4$, $4,4,5,5,5,5,5,6,6,6,6,6,6,1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,1,2,2,3,3$, $3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,1,2,2$

Positive integers a for which there is a 10 -Pythagorean triple (a, b, c) satisfying $a<=b$.
$1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10,10,10,10$, $10,11,11,11,11,11,12,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15$

The Kruskal-Macaulay function M_2(n).
$0,1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,10$, $10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13$, 13

Triangle read by rows in which row n contains a finite triangle as shown below.
$1,1,2,2,2,3,2,1,2,2,1,1,2,2,3,3,3,3,4,4,3,3,4,5,4,3,2,3,4,4,3,2,1,2,3,3,3,2,1,1,2,2,3,3,3,4,4,4$,
$4,4,5,5,5,4,4,5,6,6,5,4,4,5,6,7,6,5,4,3,4,5,6,6,5,4,3,2,3,4,5,5,5,4,3,2,1,2,3,4,4,4,4,3,2,1,1,2,2$, 3, 3, 3, 4, 4, 4, 4, 5

Algorithmic approach to AI

abc is to abd as ppqqrr is to ... ppqqss

Cornuéjols, A. (1996).
Analogie, principe d'économie et complexité algorithmique.
Actes des 11èmes Journées Françaises de l'Apprentissage.
'ppqqss' $=\operatorname{argmin}_{x} C($ 'abc', 'abd', 'ppqqri', x)
(talk, talked) \rightarrow (solve, solved)
Murena, P.-A., Dessalles, J.-L. \& Cornuéjols, A. (2017).
A complexity based approach for solving Hofstadter's analogies.
ICCBR-WS 2017, 53-62. Trondheim, Norway.

Algorithmic approach to AI

- Marcus Hutter's AIXI

Hutter, M. (2005).
Universal artificial intelligence:
Sequential decisions based on algorithmic probability. Berlin: Springer.

Algorithmic approach to AI

. Transfer learning
Murena, P.-A. (2019).
Minimum complexity knowledge transfer in artificial learning. Phd Thesis, Telecom ParisTech, Universite Paris-Saclay.

Algorithmic approach to cognitive science

Complexity $C(s)$ of s : size of the smallest available description of s

Chater, N. (1999).
The search for simplicity:
A fundamental cognitive principle?
The Quarterly J. of Exp. Psychol., 52 (A), 273-302.

$$
C(x)=\min _{p}\{l(p): M(p)=x\}
$$

Simplicity theory

Unexpectedness $=$ expected complexity - observed complexity

$$
U=C_{e x p}-C_{o b s}
$$

complexity drop

From: iciouailleurs.free.fr/HautJura/hautjura.html

Simplicity theory

Unexpectedness $=$ expected complexity - observed complexity

$$
U=C_{e x p}-C_{o b s}
$$

Dessalles, J.-L. (2006).
A structural model of intuitive probability. $7^{\text {th }}$ Int. Conf. on Cognitive Modeling, 86-91.

Combinations	Complexity	Probability
$\begin{array}{llllll}1 & 2 & 3 & 4 & 6\end{array}$	3	$p / 8 \times 10^{\wedge} 6$
$\begin{array}{lllllll}34 & 35 & 36 & 37 & 38 & 39\end{array}$	6	$p / 10^{\wedge} 6$
$\begin{array}{lllllllllllllllllll}10 & 11 & 12 & 44 & 45 & 46\end{array}$	11	$p / 32768$
	12	$p / 16384$
	12	$p / 16384$
$\begin{array}{lllllll}10 & 20 & 30 & 31 & 32 & 33\end{array}$	12	$p / 16384$
12561549	14	$p / 4096$
	- \cdot.	- .
14243638424	26	p

Simplicity theory

Unexpectedness $=$ expected complexity - observed complexity

$$
U=C_{e x p}-C_{o b s}
$$

Simplicity theory

Unexpectedness $=$ expected complexity - observed complexity

$$
U=C_{e x p}-C_{o b s}
$$

- Rarity

$$
U \geq \log N-\log P-C(f)-C(r)
$$

. Proximity

$$
U=2 \times \log (R / d)
$$

$$
L=\operatorname{argmin}\left(C(L)+2 \log \left(d_{L}\right)\right)
$$

= Anomaly
$U \geq A(k)-C(f)-C(r)$
$U \geq C(H)-C(f)-C(r)$
. Coincidences
$U=C\left(s_{1}\right)-C\left(s_{2} \mid s_{1}\right)$

- Relevance
$C_{w}(f(s))-C(f)>0$
- Responsibility
$C_{w}(s)-C_{w}(s \| a)$
数 Emotion intensity $\quad E=E_{h}+\boldsymbol{U}$

Contrasting artificial intelligence with human intelligence

Ten limitations of deep learning
. Simplicity Theory: An AIT approach to intelligence

* Contrast: a missing mechanism in the current AI toolbox
. Conclusion: mechanisms that operate on the fly

Contrast

* Anomaly detection

Curse of Dimensionality
. The missing eyebrow
$\sum \alpha_{i}\left|x_{i}^{1}-x_{i}^{2}\right|$

- Buying a used car

Contrast

Contrast is a low-dimensionality vector (\leqslant cleaning)
. Contrast object with closest prototype

- Topological decision along that vector \rightarrow membership or negation

Do it again with contrasts

- \rightarrow predication
$\bullet \rightarrow$ explanations

Contrasting artificial intelligence with human intelligence

Ten limitations of deep learning

- Simplicity Theory: An AIT approach to intelligence
. Contrast: a missing mechanism in the current AI toolbox
*- Conclusion: mechanisms that operate on the fly

Mechanisms that operate on the fly

. DNN rely on pre-digested expertise
Human cognition relies on a variety of mechanims

- Compression, Complexity drop
- Contrast
- Conflict-Abduction-Negation, Aspect, quantification, ...
- Merge, semantic linking, ...

These mechanisms operate on the fly

Mais ultimement, n'est ce pas un peu un position "religieuse" que de penser qu'aucune "loss function" ne pourra remplacer un jour l'intelligence "humaine"?

But ultimately, isn't ita bit of a "religious" position to think that no loss function will be able to replace "human" intelligence one day?

```
Sujet :
Re: Vient de paraitre: Des intelligences TRES artificielles
De :
Date
08/02/2019 à 11:52
Pour :
j1@dessalles.fr
He1lo Jean Louis,
Desole d'etre tardif pour repondre..
Je suis en australie prof invite pour l'instant.
gros decalage horaire ... et aussi climatique :-)
Genial d'ecrire un (autre) bouquin sur un sujet aussi inquietant...
je vois que tu as des idees bien arretees sur tout le buz IA en ce moment.
```



```
Mais ultimement, n'est ce pas un peu un position "religieuse
que de penser qu'aucune "loss function" ne pourra
remplacer un jour l'intelligence "humaine"?
oui, je sais que c'est deprimant ;-)
amicalement
##1e
On 07/02/19/ 6 21:26, Jean-Louis Dessalles wrote:
>
> %ilemen
```

2 December 2014 Last updated at 13:02 GMT

B|BCNEWS

Stephen Hawking warns

 artificial intelligence could end mankind

Elon Musk
Bill Gates

Thanksfor listening

jean-louis @ dessalles.fr www.dessalles.fr

Visit: www.simplicitytheory.science

